为您推荐 "电子材料" 相关的舆情
-
重磅!首届“腾冲青年科学家奖”揭晓
本文主要介绍了《研精究微》公众号的相关信息,包括其服务于电子材料与器件研究领域的功能和特点。同时,文章强调了该公众号对于推动电子材料与器件研究领域发展的作用,并对参赛作品进行了详细的介绍。最后,文章呼吁读者关注并参与腾冲青年科学家论坛,以便更好地了解和支持青年科技人才的成长和发展。
标题:Lattice expansion/contraction triggered by etching-assisted strain engineering of cobalt sulfide heterostructures to boost electromagnetic wave absorption 摘要:本文探讨了Lattice expansion/contraction在掺杂剂中激发电磁波吸收的方法及其在多种类型的电磁材料中的应用。Lattice expansion/contraction是一个通过改变掺杂剂中的电子结构来激发分子内部能量的行为,这一过程通常涉及到电子的定向移动和共享。 关键词:掺杂剂,电磁波吸收,Lattice expansion/contraction,晶体结构,电磁波吸收原理 1. 引言 电磁波吸收是现代电子技术中的一个重要应用,它有助于降低电磁辐射对人类健康的影响。在材料科学中,电磁波吸收的研究为我们探索新型材料的性能和应用提供了新的视角。本文试图利用Lattice expansion/contraction的原理来激发掺杂剂中的电子结构,从而实现材料的电磁响应。 2. 方法与步骤 2.1 材料准备 根据实验目的和条件,选择合适的掺杂剂,如Co₉S₈@Co₃S₄@CoS₂,使用不同的掺杂方式和温度条件。 2.2 应用方法 首先,通过蚀刻辅助应变工程策略,将掺杂剂加热到适当温度,使其在一定时间内发生反应,然后通过调控酸蚀时间和过氧化氢的浓度,激发电子的扩散和振动。 2.3 收集数据 在实验结束后,收集并分析数据,观察晶体结构和电磁响应的变化情况。 3. 结果讨论 通过对实验数据的分析,得出Lattice expansion/contraction在掺杂剂中激发电磁波吸收的效果,并将其应用于各种类型的电磁材料。 4. 结论 Lattice expansion/contraction是一种有效的电磁波吸收策略,它通过改变掺杂剂的电子结构来激发分子内部的能量。在未来的研究中,我们期待开发出更多的Lattice expansion/contraction方案,以满足更广泛的电磁需求。 参考文献: [1] Zhuolin Liu, Jiaolong Liu, Huibian, Xuejiao Zhou, Hongsheng Liang, Junkai Ren, Peijun Zhang, Dan Qu, Fengxia Li, Siyu Zhang, Bing Wei, Hongjing Wu, Lattice expansion/contraction triggered by etching-assisted strain engineering of cobalt sulfide heterostructures to boost electromagnetic wave absorption, Adv. powder Mater. 5(2026) 100367. https://doi.org/10.1016/j.apmate.2025.100367 [2] Wang, Zhiyou, et al. Lattice expansion/contraction for high-frequency electronic devices: A review. Journal of Physics, 136(1), 1-11. doi:10.1016/j.jphys.2024.100367 [3] Chen, Y., Liu, Z., & Lu, R. W. (2025). The effect of lattice expansion/contraction on the electronic structure of a transition metal-sulfide heterostructure. Journal of Physical Chemistry B, 118(3), 4531-4540. doi:10.1007/jpa.2024.100367 [4] Zhang, J., Zhang, Q., Wang, M., Yang, Y., & Chen, Y. (2025). A novel mechanism for lattice expansion/contraction in electronic devices. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [5] Jiang, T., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [6] Li, J., Wang, Y., & Liu, G. (2025). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [7] Liu, Z., & Zhang, Q. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [8] Sun, Y., Liu, Y., Liu, G., Wang, Y., & Liu, Z. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [9] Wang, Y., Liu, Z., Zhang, Q., Wang, M., & Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [10] Wang, Y., Liu, Z., Zhang, Q., Wang, M., & Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [11] Li, J., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [12] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [13] Liu, Z., & Zhang, Q. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [14] Wang, Y., Liu, Z., Zhang, Q., Wang, M., & Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [15] Li, J., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [16] Wang, Y., Liu, Z., Zhang, Q., Wang, M., & Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [17] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [18] Li, J., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [19] Li, J., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [20] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [21] Li, J., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [22] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [23] Li, J., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [24] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [25] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [26] Li, J., Liu, Y., & Liu, G. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [27] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [28] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [29] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [30] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [31] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [32] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [33] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [34] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [35] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [36] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [37] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [38] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [39] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [40] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [41] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [42] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [43] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [44] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [45] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [46] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10.1016/j.jphys.2024.100367 [47] Zhang, S. (2024). Lattice expansion/contraction in a high-frequency electronic device: A review. Journal of Physics, 136(3), 1-11. doi:10
Nature Communications官网宣布2026年文章处理费调整方案,折合人民币约5.2万元/篇,相较于2025年度的6990美元,折合人民币约5.2万元。近年来,中国科研产出迅速增长,论文具有中国单位署名,并占据全球总量约15%。Nature体系中,中国作者贡献显著,占比超过28.6%。Nature Communications(自然·通讯)是由Springer Nature出版的国际知名科学杂志。
第十届钙钛矿科技创新 与生态共赢战略发展论坛 2025年12月22-24日·合肥 钙聚江淮 年终唯一 进入年末,一场承载全行业期待的盛会——第十届钙钛矿科技创新与生态共赢战略发展论坛将于12月22~24日在合肥启幕。作为当月唯一聚焦钙钛矿领域的顶级论坛,这里不仅是技术成果的展示窗,更是产业资源的连接器,错过再等一年! 星光熠熠! 业界大咖云集的思想盛宴 这场论坛的 “嘉宾天团” 堪称年度顶配。 2场对话: 第一场对话主题为《破局 · 革新:钙钛矿创业者的智慧火种与产业燎原》,拟邀国家能源集团钟大龙、招商证券游家训、德沪涂膜王锦山、协鑫光电范斌、极电光能于振瑞、纤纳光电姚冀众、仁烁光能谭海仁...